钙提高烟草叶片光合作用对高温的耐性#
摘要:本文研究喷施20 mMCaCl2 对高温胁迫下烟草叶片光合荧光特性及抗氧化酶活性的影响。结果表明:高温胁迫降低了净光合速率(Pn)、气孔导度、表观量子效率(AQY)和羧化效率(CE)。高温胁迫同样导致了原初最大光化学效率(Fv/Fm)。而喷施CaCl2 提高了高温胁迫下的Pn、AQY、CE 和Fv/Fm。高温胁迫降低了超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和过氧化物酶(POD)的活性,而CaCl2预处理后,这些酶活性降低的幅度较小或者活性升高。高温处理后,谷胱甘肽还原酶(GR)活性升高,而CaCl2预处理显著增加了其升高幅度。CaCl2 预处理降低了高温胁迫下H2O2 和O2-的明显积累,且进一步提高了高温胁迫下热激蛋白(HSP70)的积累。以上结果表明,CaCl2 预处理提高了烟草叶片的光合作用,这可能与气孔导度的维持和放氧复合体耐热性的提高有关,而后两者可能与活性氧的积累较低有关。
关键词:光合作用;CaCl2;高温胁迫;耐热性;烟草 (Nicotiana tabacum L.)
0 引言
由于全球变暖和气候改变,高于正常条件10–15 oC 的热激或高温胁迫已经对全球的作物生产造成严重的威胁[1]。许多研究表明Ca2+ 参与了植物对许多环境胁迫的响应调节,包括高温 [2]。高温胁迫下胞质Ca2+增加,可能减轻了热伤害,使植物细胞能够更好的生存[3]。已经报道,外源Ca2+ 提高了许多植物的耐热性,可能与较高的抗氧化酶活性和细胞膜的脂质过氧化作用较低有关[4-6]。 外施Ca2+能够抑制高温胁迫下叶绿素的降解,可能是因为其降低了光氧化[7],或者是维持了膜的完整性 [8]。Ca2+ 处理也提高了高温胁迫下热激蛋白的合成,如HSP26、HSP70 [9]50 。 Schöffl et al. (1999)的研究表明细胞和组织耐热性的提高几乎全部依赖于HSP70 的诱导[10]。然而psbU 基因突变的藻类(Synechococcus)中, HSP70 并没有受影响[11]。
光合作用是植物对高温最敏感的生理过程之一,光系统II(PSⅡ)是光合作用过程中对高温最敏感的部位,高温胁迫可以抑制放氧和PSII 活性[12]。但是关于外源CaCl2 对高温胁迫下烟草叶片光系统II受体侧及放氧复合体的影响,特别是外源CaCl2提高耐热性与光合作用维持的关系研究较少。本文通过研究CaCl2 预处理提高烟草耐热性,探讨外源钙提高高温胁迫下植物光合作用。
4 结论
由以上结果,我们总结了CaCl2 处理提高烟草耐热性,可能主要是因为以下几个方面:(1) 较高气孔导度的维持,可能与较高的光合速率有关;(2) 放氧复合体和PSII 反应中心耐热性的提高可能是由于ROS 积累的较少,而后者与抗氧化酶活性的提高有关;(3) 较高的HSP70 水平可能对其高温胁迫下耐性的提高有关。
[参考文献] (References)
[1] Wahid A,Gelani S,Ashrf M, Foolad MR. Heat tolerance in plants: an overview. Environ Exp
Bot,2007,61:199-223.
[2] Wang Y, Yu QY, Tang XX, Wang LL. Calcium pretreatment increases thermotolerance of Laminaria japonica
sporophytes. 315 Prog Nat Sci, 2009, 19:435-442.
[3] Gong M, Vander Luit AH, Knight MR, Trewavas AJ. Heat-shock-induced changes in intracellular Ca2+ level
in tobacco seedlings in relation to thermotolerance. Plant Physiol, 1998,116: 429-437
[4] Jiang YW, Huang BR. Effects of calcium on antioxidant activities and water relations associated with heat
tolerance in two cool-season grasses. J Exp Bot, 2001, 52: 341-349.
[5] Serrano M, Martínez-Romero D, Castillo S, Fábian G, Daniel V. Role of calcium and heat treatments in
alleviating physiological changes induced by mechanical damage in plum. Postharvest Biol Tec, 2004,34:155-167.
[6] Wang LJ, Huang WD, Li JY, Liu YF, Shi YL. Peroxidation of membrane lipid and Ca2+ homeostasis in grape
mesophyll cells during the process of cross-adaptation to temperature stresses. Plant Sci, 2004, 167:71-77.
[7] Wise RR, Naylor AW. Chilling-enhanced photo-oxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol, 1987, 83: 278-282.
[8] Coria NA, Sarquis JI, Penalosa I, Urzua M. Heat-induced damage in potato (Solanum tuberosum) tubes:
membrane stability, tissue viability, and accumulation of glycoalkaloids. J Agric Food Chem, 1998, 46:4524-4528.
[9] Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol, 2003, 132:1186-1195.
[10] Schöffl F, Prandl R, Reindl A. Molecular responses to heat stress.In: Shinozaki, K, Yamaguchi-Shinozaki K
(Eds.), Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. R.G. Landes Co., Austin,
Texas; 1999, p 81-98.
[11] Nishiyama Y, Los DA, Murata N. PsbU, a Protein Associated with Photosystem II, Is required for the
335 acquisition of cellular thermotolerance in Synechococcus species PCC 7002. Plant Physiol, 1999, 120: 301-308.
[12] Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress: an overview of
molecular responses in photosynthesis. Photosynth Res, 2008, 98: 541-550.
[13] Strasser RJ, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and
cyanobacteria. Photochem Photobiol, 1995,61: 32-42.
[14] Lutts S, Kinet JM, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars
differing in salinity resistance. Ann Bot, 1996,78: 389-398.
[15] Heath RL, Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid
peroxidation. Arch Biochem Biophys 1968; 125:189-198
[16] Elstner FF, Heupel C. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for
345 superoxide dismutase. Anal Biochem, 1976, 70: 616-620.
[17] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant
Physiol, 1977, 59: 411-416.
[18] Giannopolitis GN, Ries SK. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol, 1977, 59:309-315.
[19] Aebi H. Catalase in vitro. Method Enzymol, 1984, 105:121-126.
[20] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate peroxidase in spinach chloroplasts. Plant
Cell Physiol, 1981, 22: 867-880.
[21] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide
dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 1992, 98:1222-1227.
[22] Schaedle M, Bassham JA. Chloroplast glutathione reductase. Plant Physiol, 1977, 59:1011-2.
[23] Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein using
the principal of protein-dye binding. Anal Biochem, 1976, 72: 248-254.
[24] Zhao XX, Ma QQ, Liang C, Fang Y, Wang YQ, Wang W. Effect of glycinebetaine on function of thylakoid
membranes in wheat flag leaves under drought stress. Biol Plant, 2007, 51:584-588.
[25] Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol, 2008,59:89-113.
[26] Mehta P, Allakhverdiev SI, Jajoo A. Characterization of photosystem II heterogeneity in response
to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res, 2010, 105: 249-255
[27] Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 2007, 1767: 414-421.
[28] Knight H, Trewavas AJ, Knight MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a
change in calcium signature after acclimation. Plant Cell, 1996,8: 489-503.
[29] Francisco J, Cabañero M, Martínez-Ballesta C, Teruel JA, Carvajal M. New evidence about the relationship
between water channel activity and calcium in salinity-stressed pepper plants. Plant Cell Physiol, 2006, 47: 224-233.
[30] Liu F, Yoo BC, Lee JY, Pan W, Harmon AC. Calcium-regulated phosphorylation of soybean serine
acetyltransferase in response to oxidative stress. J Biol Chem,2006, 281: 27405-27415.
[31] Bonza MC, Morandini P, Luoni L, Geisler M. Cloning of At-ACA8, a plasma membrane localized,
calmodulin regulated calcium-ATPase of Arabidopsis thaliana and localization of its calmodulin binding domain at the N-terminus. Plant Physiol , 2000, 123:1495-1505.
[32] Neta-Sharir I, Isaacson T, Lurie S, Weiss D. Dual role for tomato heat shock protein 21: protecting
photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell, 2005, 17:1829-1838.
[33] Camejo D, Jiménez A, Alarcón JJ, Torres W, Gómez JM, Sevilla F. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol, 2006 , 33:177-187.
[34] Guo YP, Zhou HF, Zhang LC. Photosynthetic characteristics and protective mechanisms against
photooxidation during high temperature stress in two citrus species. Sci Hortic, 2006, 108: 260-267.
[35] Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Schroeder Taylor AT, Low PS, Lee Y. Oligogalacturonic
acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells
of tomato and Commelina communis. 385 Plant Physiol, 1999,121:147-152.
[36] Crafts-Brander C, Salvucci ME. Sensitivity to photosynthesis in the C4 plant, maize to heat stress. Plant Cell,2002, 12: 54-68.
[37] You JH, Lu JM, Yang WJ. Effects of Ca2+ on photosynthesis and related physiological indexes of wheat
seedlings under low temperature stress. Acta Agron Sin, 2002, 28: 693-696.
[38] Wise RR, Olson AJ, Schrader SM, Sharkey TD. Electron transport is the functional limitation of
photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ, 2004, 27: 717-724.
[39] Bukhov NG, Wiese C, Neimanis S, Heber U. Heat sensitivity of chloroplasts and leaves: leakage of protons
from thylakoids and reversible activation of cyclic electron transport. Photosynth Res, 1999,59: 81-93.
[40] Camejo D, Rodríguez P, Morales MA, Dell'amico JM, Torrecillas A, Alarcón JJ. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol, 2005, 162:281-289.
[41] Mcdonald GK, Paulsen GM. High temperature effects on photosynthesis and water relations of grain legumes.
Plant Soil, 1997, 196: 47-58.
[42] De Ronde JAD, Cress WA, Kruger GHJ, Strasser RJ, Staden JV. Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol, 2004, 61:1211-1214.
[43] Haldimann P, Strasser RJ. Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise
kinetic in pea (Pisum sativum L.). Photosynth Res, 1999,62: 67-83.
[44] Mathur S, Jajoo A, Mehta P, Bharti S. Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 2011,13: 1-6.
[45] Strasser RJ. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients.
Photosynth Res 1997; 52:147-155.
[46] Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta, 2007,225:719-733.
学术论文网Tag:
|