10Gbps-光载射频技术的发展#
摘要:光载毫米波(ROF)接入技术以其通信容量大、接入方式灵活、覆盖范围广等优点成为下一代接入网中非常具有潜力的技术之一,近年来高清电视、物联网等业务的广泛开展要求通信网具有更高的接入速率,甚至达10Gbps 及其以上。本文介绍了10Gbps 及其以上传输速率光载射频(ROF)链路的关键技术及核心器件,通过与低速率技术及器件的比较,分析了其所能达到的性能参数;着重探讨了基于60GHz、120GHz、300GHz 等研究热点的ROF 系统的发展,分析了其性能优劣程度,通过相应的实例验证了10Gbps-ROF 技术应用的可行性。
关键词:光载射频技术;毫米波;10Gbps
0 引言
近年来,光载毫米波(ROF)技术以其大容量、低损耗、灵活接入等优点越来越受到人们的关注。作为宽带通信业务到用户的“最后一跳”,该技术兼具了光纤通信和无线通信的双项优势,既解决了光纤通信中分配方式繁冗,存在“电的瓶颈”等难题,同时还突破了传统无线通信系统的带宽和传输速率的限制,实现了光纤和无线网络的有机融合,被认为下一代非常有潜力的接入技术之一。
以前的研究报道中,毫米波频段多位于60GHz 以下,且信号传输也大多局限于1G—10Gbps。然而,随着新型业务的出现,通信容量迅速增加,据资料显示,下一代高清电视-UHDTV 和4-K TV 的分辨率增加为现有HDTV 的16 倍,所需的传输速率达24Gbps;同时,在现有的固网接入技术中,100Gbps 的以太网(Ethernet)和40Gbps 的无源光网络(Passive optical network)技术已处于标准化的过程,且固定无线接入、无线回程的传输速率已达1.5Gbps,而无线局域网(LAN)和个人局域网(PAN)的接入速率业已至数十吉比特每秒。因此10Gbps 及其以上传输速率的接入技术是未来无线通信发展的重要方向,也成为了ROF技术研究的热点。
本文将对10Gbps-ROF 技术进行描述,分为两个部分:核心技术及关键器件;系统发展。下面对其进行一一叙述。
3 结论
本文介绍了 10Gbps 及其以上ROF 链路的关键技术及核心器件,并对基于60GHz、120GHz、300GHz 等载波的ROF 系统的发展做了重要阐述,并通过具体的实例验证了此技术应用的可行性。随着ROF 技术的进一步发展,并与现今热点的THz 技术相结合,将会大大拓展接入系统的传输速率,推动宽带接入技术的发展。
[参考文献] (References)
[1] K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, "Active mode-locking at 50-GHz repetition frequency by
half-frequency modulation of monolithic semiconductor lasers integrated with electro-absorption modulators,"Appl. Phys. Lett. 1999, 69:2626-2628
[2] A. Hirata, M. Harada, and T. Nagatsuma, 120-GHz Wireless Link Using Photonic Techniques for Generation,
Modulation, and Emission of Millimeter-Wave Signals JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003,21(10):2145-2153
[3] http://www.ieee802.org/15/pub/TG3c.html
[4] F. van Dijk, A. Enard, X. Buet, F. Lelarge, and G.-H. Duan, "Phase noise reduction of a quantum dash
mode-locked laser in a millimeter-wave coupled opto-electronic oscillator," J. Lightwave Technol. 2008,26(15):2789-2794
[5] Andreas Stöhr, Akram Akrout, Rüdiger Buß,1 Benoit Charbonnier, Frederic van Dijk, Alain Enard Sascha
Fedderwitz, Dieter Jäger, Mathieu Huchard, Frédéric Lecoche, Javier Marti, Rakesh Sambaraju, Andreas Steffan, Andreas Umbach, and Mario Wei "60 GHz radio-over-fiber technologies for broadband wireless services"JOURNAL OF OPTICAL NETWORKING, 2009, 8(5):471-487
[6] F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G.
Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, "Recent
advances on InAs/ InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 _m," IEEE J. Sel. Top. Quantum Electron. 2007, 13(1):111-124
[7] Thomas Kleine-Ostmann & Tadao Nagatsuma A Review on Terahertz Communications Research, J Infrared
Milli Terahz Waves J Infrared Milli Terahz Waves ,2011 , 32:143-171
[8] T. Nagatsuma, H. Ito, and T. Ishibashi, High-power RF photodiodes and their applications, Laser &Photonics
Review, 2009, 3(1-2):123-137
[9] ITO H, FURUTA T, KODAMA S, et al. InP/InGaAs uni- traveling- carrier photodiode with 310 GHz
bandwidth [J ]. Electronics Letters , 2000, 36(21):1809- 1810.
[10] K. J. Williams, D. A. Tulchinsky, and J. C. Campbell, High-power photodiodes, Tech. Dig. Microwave Photonics, 2007,9-13
[11] http://www.semi.ac.cn/kxcb/kpwz/200912/t20091204_2681577.html
[12] H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto,T. Furuta, N. Kukutsu, T. Nagatsuma and Y.
Kado 8 Gbit/s wireless data transmission at 250 GHz ELECTRONICS LETTERS 2009, 45(22):1121-1122
[13] R. Sambaraju, J. Herrera, J. Marti, D. Zibar, A. Caballero, J. B. Jensen, Up to 40 Gb/s Wireless Signal
Generation andDemodulation in 75-110 GHz Band using Photonic Techniques MWP 2010 Post-deadline paper
[14] M. Weiß, M. Huchard, A.s Stöhr, B. Charbonnier, S. Fedderwitz, and D. Stefan, 60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26(15):2424-2429
[15] W.J. Jiang, C.T. Lin, L.Ying, W, He, Ch. C. Wei, C.H. Ho, Y.M. Yang, P.T.Shih, J.Chen, and S.Chi,32.65-Gbps OFDM RoF Signal Generation at 60GHz Employing an Adaptive I/Q Imbalance Correction ECOC2010, 19-23 2010, Torino, Italy
[16] H. S. Chung, S. H. Chang, and K. Kim, Effect of IQ Mismatch Compensation in an Optical Coherent
OFDM Receiver, IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22(5):308-310
[17] A.Tarighat, R. Bagheri, and A. Sayed, Compensation Schemes and Performance Analysis of IQ Imbalances in
OFDM Receivers, IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53(8): 3257-3268
[18] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, 120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54(5):1937-1943
[19] A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, Low-phase noise photonic
millimeter-wave generator using an AWG integrated with a 3-dB combiner, IEICE Trans. Electron. 2005,E88-C(7):1458-1464
[20] H. Ito, T. Furuta, T. Kosugi, A. Hirata, H. Takahashi, Y. Muramoto, M.Tokumitsu, Y. Sato, T. Nagatsuma,
and T. Ishibashi, "Over-10-dBm output uni-traveling-carrier photodiode module integrating a power amplifier for
wireless transmissions in the 125-GHz band," IEICE Electron. Exp. 2005, 2(16):446-450
[21] T. Kosugi, T. Shibata, T. Enoki, M. Muraguchi, A. Hirata, T. Nagatsuma, and H. Kyuragi, "A 120-GHz
millimeter-wave MMIC chipset for future broadband wireless application," in IEEE MTT-S Int. Microw. Symp. Dig. 2003, 1:129-132.
[22] A. Hirata, H. Takahashi, N. Kukutsu, Y. Kado, H. Ikegawa, H. A. Hirata, R. Yamaguchi, T. Kosugi, H.
Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N.Iai, S. Okabe, S. Kimura, H. Ikegawa, H.
Nishikawa, T. Nakayama, and T. Inada, 10-Gbit/s wireless link using InP HEMT MMICs for generating
120-GHz-band millimeter-wave signal, IEEE Trans. Microwave Theory Tech. 2009,57(5):1102-1109
[23] A. Hirata, H. Takahashi, N. Kukutsu, Y. Kado, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada,
Transmission trial of television broadcast materials using 120-GHz-band wireless link, NTT Technica Review 7,March Issue 2009
[24] Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, Giga-bit wireless link using 300-400 GHz bands,
Tech. Dig. IEEE International Topical Meeting on Microwave Photonics, 2009, 1-4
学术论文网Tag:
|