水稻籽粒蛋白的提取优化及其蛋白组学研究体系的建立#
摘要:本实验以水稻籽粒为研究材料,为建立适用于水稻籽粒的蛋白组学研究体系,首先对比了3 种不同的提取方法:TCA/丙酮提取法、可溶性提取法、苯酚提取法;在最优提取法的基础上,本研究优化了自制管胶与GE 公司IPG 商业化胶条的双向电泳条件;最后为评价优化后的籽粒蛋白提取方法和双向电泳体系与蛋白质组学后续研究策略的兼容性,本研究通过3 个重要的蛋白质组学研究策略MALDI-TOF/MS、western- blot 和磷酸化蛋白组学方法对胶内蛋白质进行鉴定分析;结果表明,可溶性提取法效果最佳,获得的双向电泳图谱背景低,蛋白质点多,693 个,且得到有效的分离;自制管胶载体两性电解质pH 3-10 和pH 5-8的比例为1: 3 时2- DE图谱上的蛋白质点分布更为均匀,同时将IPG 胶条一向电泳1 000 V 2h的除盐程序时间适当延长为6 h,图谱上的蛋白质点聚焦更为充分;胶内蛋白质鉴定分析结果表明可溶性提取方法获取的样品适用于质谱鉴定、western-blot分析、与磷酸化蛋白鉴定。本研究初步建立了水稻籽粒的蛋白组学研究体系。
关键词:水稻;水稻籽粒;蛋白质组学;蛋白质双向电泳(2- DE);蛋白磷酸化修饰
4 结论
本研究结果表明,可溶性提取法提取蛋白结果优于苯酚提取法和TCA/丙酮提取法,适合于水稻籽粒蛋白的提取,该方法获得的蛋白质2- DE 图谱蛋白质点多且清晰,背景干净,谷蛋白少,重复性好。同时优化了自制管胶和固化IPG 胶条电泳参数,得到了更优的2-DE图谱。通过对胶内蛋白质点进行质谱分析、磷酸化蛋白质组学分析和western-blot 免疫印迹试验,得到良好的鉴定分析结果,说明籽粒蛋白可溶性提取方法和优化后的双向电泳体系与蛋白质组学后续研究策略兼容,从而建立了水稻籽粒蛋白组学研究体系,这为水稻籽粒蛋白质组学研究奠定了坚实的基础,同时也为其他谷类作物籽粒蛋白质组学研究提供了参考依据。
[参考文献] (References)
[1] 万骏南,吴建富,邓强辉,张东萍,水稻籽粒灌浆的研究进展[J].安徽农业科学,2007,35(27):8424-8426,8429
[2] 梁康迳,林文雄, 陈志雄, 李亚娟, 梁义元, 郭玉春, 何华勤, 陈芳育. 不同环境下水稻谷粒重的发育遗传分析[J]. 中国农业科学, 2003, 36(10): l113-1119
[3] Tetlow I J. Understanding storage starch biosynthesis in plants: a means to quality improvement[J]. Canadian
Journal of Botany, 2006, 84: 1167-1185
[4] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during
development of rice endosperm[J]. Plant Science, 1992, 82: 15-20.
[5] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J . Activities of enzymes involved in source-to-starch
metabolism in rice grains subjected to water stress during filling[J]. Field Crops Research, 2003, 81: 69-81.
[6] 杨建昌, 彭少兵, 顾世梁, R. M. Visperas, 朱庆森. 水稻灌浆期籽粒中3 个与淀粉合成有关的酶活性变化[J]. 作物学报, 2001, 27: 157-164.
[7] Zhu T, Budworth P, Chen W. Transcriptional control of nutrient partitioning during rice grain filling[J]. Plant
biotechnology journal, 2003, 1: 59-70
[8] 李兆伟, 熊君, 李振方, 齐晓辉, 陈鸿飞, 邵彩虹, 王经源, 梁义元, 林文雄. 水稻灌浆期叶鞘蛋白质差异表达分析[J]. 作物学报, 2008, 4: 619-626
[9] Shunping Y, Zhang C T, Wei A S, Wei N S. Proteomic analysis of salt stress-responsive proteins in rice root[J].
Proteomics 2005, 5, 235-244
[10] Agrawal G K, Thelen J J. Large Scale Identification and Quantitative Profiling of Phosphoproteins Expressed
during Seed Filling in Oilseed Rape[J]. Mol Cell Proteomics, 2006, 5: 2044- 2059
[11] Huber S C, and Hardin S C Numerous posttranslational modificationsprovide opportunities for the intricate
regulation of metabolic enzymes at multiple levels[J]. Curr. Opin. Plant Biol, 2004 , 7, 318-322
[12] Pawson T, Scott J D. Protein phosphorylation in signaling- 50 years and counting[J]. Trends Biochem. Sci,2005, 30, 286-290.
[13] Mukherji, M. Phosphoproteomics in analyzing signaling pathways[J]. Expert Rev. Proteomics, 2005, 2,117-128.
[14] Hardin S C, Tang G Q, Scholz A, Holtgraewe D, Winter H, Huber S C. Phosphorylation of sucrose synthase
at serine 170: occurrence and possible role as a signal for proteolysis[J]. Plant J, 2003, 35, 588-603.
[15] McMichael R W, Jr, Klein R R, Salvucci M E, Huber S C. Identification of the major regulatory
phosphorylation site in sucrosephosphate synthase[J]. Arch. Biochem. Biophys, 1993 307, 248-252.
[16] Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: localization and regulation of
activity of key enzymes[J]. Crit. Rev. Biochem. Mol. Biol, 2000, 35, 253-289.
[17] Moorhead, G., Douglas, P., Cotelle, V., Harthill, J., Morrice, N., Meek, S., Deiting, U., Stitt, M., Scarabel M,
Aitken A, MacKintosh C. Phosphorylation-dependent interactions between enzymes of plant metabolism and
14-3-3 proteins[J]. Plant J, 1999, 18, 1-12.
[18] Glinski M, Weckwerth W. Differential multisite phosphorylation of the trehalose-6-phosphate synthase gene
family in Arabidopsis thaliana: a mass spectrometry-based process for multiparallel peptide library
phosphorylation analysis[J]. Mol. Cell. Proteomics, 2005, 4, 1614-1625.
[19] Tang G Q, Hardin S C, Dewey R, Huber S C. A novel C-terminal proteolytic processing of cytosolic pyruvate
kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds[J]. Plant J , 2003 34,77-93.
[20] Savage L J, Ohlrogge J B. Phosphorylation of pea chloroplast acetyl-CoA carboxylase[J]. Plant J, 1999, 18,521-527.
[21] Tripodi K E, Turner W L, Gennidakis S, Plaxton W C. In vivo regulatory phosphorylation of novel
phosphoenolpyruvate carboxylase isoforms in endosperm of developing caster oil seeds[J]. Plant Physiol, 2005,139, 967-978.
[22] Garcia-Mata C, Lamattina L. Abscisic acid, nitric oxide and stomatal closure is nitrate reductase one of the
missing links? [J]. Trends Plant Sci, 2003, 8, 20-26.
[23] Thelen J J, Muszynski M G, Miernyk J A, Randall D D. Molecular analysis of two pyruvate dehydrogenase
kinases from maize[J]. J. Biol. Chem, 1998, 273, 26618-26623.
[24] 王经源, 陈舒奕, 梁义元, 等. ISO-DALT 双向电泳方法的优化与改进[J]. 福建农林大学学报, 2006,35(2): 187-190.
[25] Dumas-Gaudot E, Amiour N, Weidmann S, et al. A technical trick for studying proteomics in parallel to
transcriptomics in symbiotic root-fungus interactions[J]. Proteomics 2004, 4 (2): 451.
[26] Dai S, Chen T, Chong K, et al. Proteomics identification of differentially expressed proteins associated with
pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen[J]. Mol Cell Proteomics, 2007, 6 (2):207.
[27] Blum H, Beiers H, Gross H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide
gels[J]. Electrophoresis, 1987, 8 (2):93.
[28] Peng X X, Ye X T, Wang S Y. Identification of novel immunogenic proteins of Shigella flexneri 2a by
proteomic methodologies[J]. Vaccine, 2004, 22: 2750- 2756.
[29] 李德军,邓治,陈春柳,陈守才,植物组织双向电泳样品制备方法研究进展[J].中国农学通报,2009,25(24):78-82
[30] 孟 慧, 段翠芳, 曾日中. 植物蛋白质组学研究概况[J]. 热带农业科学,2006, 26(2): 60-64.
[31] 余初浪、严顺平、孙卫宁、杨 玲,适于水稻根、叶、悬浮细胞总蛋白质分析的高分辨率双向电泳方法[J]. 中国水稻科学, 2006.20(5):549-552.
[32] 李明云,冀德伟,吴海庆,陈炯,史雨红, 大黄鱼肝脏蛋白质组双向电泳技术的建立及优化[J]. 水产科学,2010, 29(1), 27-30.
[33] 甄 艳, 施季森. 质谱技术在蛋白质组学研究中的应用[J]. 南京林业大学学报: 自然科学版, 2011, 35 (1):103- 108.
[34] Cohen P. The origins of protein phosphorylation[J]. Nat Cell Biol. 2002 , 4(5): E127-E130.
学术论文网Tag:
|