另一方面,一个坚固的方法可以经过多次测量或不同的操作参数仍历久不衰,还是能得出有用、有意义而且可以重复的 RSD 很小的数据。大部分的人都偏好使用坚固耐用且实际、不贵又很好转移到有相似数据和 RSD 的不同群体、实验室的方法。实际上没有科研论文有讨论过自己研究的坚固性和耐用性,除非他们有遵守 ICH 指南,他们通产只有提到一组(优化过的)实验参数,这些参数是取得所有或大部分文章中呈现的数据,但他们从不讨论坚固性和耐用性这些重要的想法。 3. 系统适用性 你的方法最后还是要有系统适用性测试,也就是说,必须要能展示出这个方法适合预期测量。这需要你的实际样本中,在已知水平要有至少两组或以上的试剂系统适用性标准,对比一个试剂,也就是已经找出且定量的实际分析。接着,一定要列出这个标准,做为基准线解决另一个试剂在该标准样本区间的分析物高峰。此外,分析物高峰一定要能够以标准、定量方法的高精确度和准确度被辨识且定量。不过,真正的定量研究都是首先进行系统适用研究,这样分开进行的系统适用性是在被实际样本测量前,证明你的分析系统正确运作的理想方式。虽然大部分的学术 R&D 没有用系统适用性样本,但在许多产业研究中,这是在使用真实样本前必备的条件。 4. AMV 其他方面:准确度 (accuracy)、精确度 (precision)、检测限制等 好的分析方法还需要具备哪些条件,帮你收集你所选择领域的数据呢?有个简单容易设置、容易教给新用户、容易维护、稳定操作、有计算机控制并且能快速取得数据的方法是每个人都想要的,当科学分析方法能达到上述理想标准时,科学能进展得更快。一般人会想要可以提供高准确度的数据(也就是有实际分析水平的一致测量)、每个测量皆精确(小 RSD)、只针对特定分析物(只辨认、量化特定分析物)、低检测与量化限制、线性范围大,还有,强大的数据的方法。上面提到的所有特性基本上都该涵盖在方法中,并且运用在你自己还有其他人的测量中。 尽管有这些进行 AMV 的指南存在,无法重复的方法和结果仍是常见的现象。这样导致的后果通常是已发表数据被迫撤稿,这是对任何科研人员来说是很严重的。那么我们要怎么避免这些无法重复的结果被发表呢?如果科研人员能够要求自己和身边的同行提供所有的数据(至少,要能够进行重复和重现工作)还有充足的统计处理数据点,那么就不会有更多无法重现的文献发表或是因为无法重现而导致的撤稿发生。此外,科研人员也不会失去自己在科学界受人敬重的地位,保全自己的科研生涯。因此,很明显的,如果原研究人员和原研究实验室能够遵循好科学的实践原则,发表高质量数据、结果,那么科学的声誉和未来都会变得更好。 你的未来也是?不是吗? 论文发表Tag:代写论文 代写代发论文 论文发表 代发论文 |